We made every endevour to protect your privacy, however it is almost impossible to avoid cookies, so this site uses a few of them, e.g. to ensure that you remain logged in when you jump between pages. Please be assured that we don't use third party cookies, and that cookies are not used to profile your behaviour, just to add functionality to the site.

Print

  1. Marta Moraschi, Giovanni Giulietti, Federico Giove, Manuela Guardati, Girolamo Garreffa, Nicola Modugno, Claudio Colonnese and Bruno Maraviglia.
    fMRI study of motor cortex activity modulation in early Parkinson's disease. Magnetic Resonance Imaging 28(8):1152–1158, 2010.
    Abstract Parkinson's disease is a neurological disorder associated with the disfunction of dopaminergic pathways of the basal ganglia, mainly resulting in a progressive alteration in the execution of voluntary movements. We present a functional magnetic resonance imaging (fMRI) study on cortical activations during simple motor task performance, in six early?stage hemiparkinsonian patients and seven healthy volunteers. We acquired data in three sessions, during which subjects performed the task with right or left hand, or bimanually. We observed consistent bilateral activations in cingulate cortex and dorsolateral prefrontal cortex of Parkinsonian subjects during the execution of the task with the affected hand. In addition, patients showed both larger and stronger activations in motor cortex of the affected hemisphere with respect to the healthy hemisphere. Compared with the control group, patients showed a hyperactivation of the dorsolateral prefrontal cortex of the affected hemisphere. We concluded that a presymptomatic reorganization of the motor system is likely to occur in Parkinson's disease at earlier stages than previously hypothesized. Moreover, our results support fMRI as a sensitive technique for revealing the initial involvement of motor cortex areas at the debut of this degenerative disorder. Parkinson's disease is a neurological disorder associated with the disfunction of dopaminergic pathways of the basal ganglia, mainly resulting in a progressive alteration in the execution of voluntary movements. We present a functional magnetic resonance imaging (fMRI) study on cortical activations during simple motor task performance, in six early?stage hemiparkinsonian patients and seven healthy volunteers. We acquired data in three sessions, during which subjects performed the task with right or left hand, or bimanually. We observed consistent bilateral activations in cingulate cortex and dorsolateral prefrontal cortex of Parkinsonian subjects during the execution of the task with the affected hand. In addition, patients showed both larger and stronger activations in motor cortex of the affected hemisphere with respect to the healthy hemisphere. Compared with the control group, patients showed a hyperactivation of the dorsolateral prefrontal cortex of the affected hemisphere. We concluded that a presymptomatic reorganization of the motor system is likely to occur in Parkinson's disease at earlier stages than previously hypothesized. Moreover, our results support fMRI as a sensitive technique for revealing the initial involvement of motor cortex areas at the debut of this degenerative disorder.
    URL, DOI

  2. Lutz Trahms and Martin Burghoff.
    NMR at very low fields. Magnetic Resonance Imaging 28(8):1244–1250, 2010.
    Abstract Although nuclear magnetic resonance in low fields around or below the Earth's magnetic field is almost as old as nuclear magnetic resonance itself, the recent years have experienced a revival of this technique that is opposed to the common trend towards higher and higher fields. The background of this development is the expectation that the low-field domain may open a new window for the study of molecular structure and dynamics. Here, we will give an overview on the specific features in the low-field domain, both from the technical and from the physical point of view. In addition, we present a short passage on the option of magnetic resonance imaging in fields of the micro-Tesla range. Although nuclear magnetic resonance in low fields around or below the Earth's magnetic field is almost as old as nuclear magnetic resonance itself, the recent years have experienced a revival of this technique that is opposed to the common trend towards higher and higher fields. The background of this development is the expectation that the low-field domain may open a new window for the study of molecular structure and dynamics. Here, we will give an overview on the specific features in the low-field domain, both from the technical and from the physical point of view. In addition, we present a short passage on the option of magnetic resonance imaging in fields of the micro-Tesla range.
    URL, DOI

  3. Baxter P Rogers, Santosh B Katwal, Victoria L Morgan, Christopher L Asplund and John C Gore.
    Functional MRI and multivariate autoregressive models. Magnetic Resonance Imaging 28(8):1058–1065, 2010.
    Abstract Connectivity refers to the relationships that exist between different regions of the brain. In the context of functional magnetic resonance imaging (fMRI), it implies a quantifiable relationship between hemodynamic signals from different regions. One aspect of this relationship is the existence of small timing differences in the signals in different regions. Delays of 100 ms or less may be measured with fMRI, and these may reflect important aspects of the manner in which brain circuits respond as well as the overall functional organization of the brain. The multivariate autoregressive time series model has features to recommend it for measuring these delays and is straightforward to apply to hemodynamic data. In this review, we describe the current usage of the multivariate autoregressive model for fMRI, discuss the issues that arise when it is applied to hemodynamic time series and consider several extensions. Connectivity measures like Granger causality that are based on the autoregressive model do not always reflect true neuronal connectivity; however, we conclude that careful experimental design could make this methodology quite useful in extending the information obtainable using fMRI. Connectivity refers to the relationships that exist between different regions of the brain. In the context of functional magnetic resonance imaging (fMRI), it implies a quantifiable relationship between hemodynamic signals from different regions. One aspect of this relationship is the existence of small timing differences in the signals in different regions. Delays of 100 ms or less may be measured with fMRI, and these may reflect important aspects of the manner in which brain circuits respond as well as the overall functional organization of the brain. The multivariate autoregressive time series model has features to recommend it for measuring these delays and is straightforward to apply to hemodynamic data. In this review, we describe the current usage of the multivariate autoregressive model for fMRI, discuss the issues that arise when it is applied to hemodynamic time series and consider several extensions. Connectivity measures like Granger causality that are based on the autoregressive model do not always reflect true neuronal connectivity; however, we conclude that careful experimental design could make this methodology quite useful in extending the information obtainable using fMRI.
    URL, DOI

  4. Houdt, J Petra, Jan C Munck, Maeike Zijlmans, Geertjan Huiskamp, Frans S S Leijten, Paul A J M Boon and Pauly P W Ossenblok.
    Comparison of analytical strategies for EEG-correlated fMRI data in patients with epilepsy. Magnetic Resonance Imaging 28(8):1078–1086, 2010.
    Abstract The simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can be used to localize interictal epileptiform discharges (IEDs). Previous studies have reported varying degrees of concordance of EEG-fMRI with electroclinical findings. The aim of the present study is to evaluate to what extent this variability is determined by the analytical strategy or by the properties of the EEG data. For that purpose, 42 IED sets obtained in 29 patients with epilepsy were reanalyzed using a finite impulse response approach, which estimates the hemodynamic response function (HRF) from the data and allows non-causal effects. Cardiac effects were treated as additional confounders in the model. This approach was compared to the classical approach assuming a fixed HRF for each voxel in the brain. The performance of each method was assessed by comparing the fMRI results to the EEG focus. The flexible model revealed more significantly activated voxels, which resulted in more activated brain regions concordant with the EEG focus (26 vs. 16). Correction for cardiac effects improved the results in 7 out of the 42 data sets. Furthermore, design theory for event-related experiments was applied in order to determine the influence of the number of IEDs and their temporal distribution on the success of an experiment. It appeared that this success is highly dependent upon the number of IEDs present during the recording and less on their temporal spacing. We conclude that the outcome of EEG-fMRI can be improved by using an optimized analytical strategy, but also depends on the number of IEDs occurring during the recording. The simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can be used to localize interictal epileptiform discharges (IEDs). Previous studies have reported varying degrees of concordance of EEG-fMRI with electroclinical findings. The aim of the present study is to evaluate to what extent this variability is determined by the analytical strategy or by the properties of the EEG data. For that purpose, 42 IED sets obtained in 29 patients with epilepsy were reanalyzed using a finite impulse response approach, which estimates the hemodynamic response function (HRF) from the data and allows non-causal effects. Cardiac effects were treated as additional confounders in the model. This approach was compared to the classical approach assuming a fixed HRF for each voxel in the brain. The performance of each method was assessed by comparing the fMRI results to the EEG focus. The flexible model revealed more significantly activated voxels, which resulted in more activated brain regions concordant with the EEG focus (26 vs. 16). Correction for cardiac effects improved the results in 7 out of the 42 data sets. Furthermore, design theory for event-related experiments was applied in order to determine the influence of the number of IEDs and their temporal distribution on the success of an experiment. It appeared that this success is highly dependent upon the number of IEDs present during the recording and less on their temporal spacing. We conclude that the outcome of EEG-fMRI can be improved by using an optimized analytical strategy, but also depends on the number of IEDs occurring during the recording.
    URL, DOI

  5. Fahad Sultan, Salah Hamodeh, Yusuke Murayama, Kadharbatcha S Saleem and Nikos Logothetis.
    Flat map areal topography in Macaca mulatta based on combined MRI and histology. Magnetic Resonance Imaging 28(8):1159–1164, 2010.
    Abstract Flattened representations are a useful approach to represent the convoluted complex surface of the neocortex of primates and other large-brained mammals. In this study, we compared the flattened representation of neocortical areas obtained from the recently published MRI and histology atlas of the rhesus monkey brain (Saleem KS, Logothetis NK. A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates. London: Academic; 2007) with other previously published maps. Our results confirm that flat map representations are advantageous due to their ease of use and that current flat maps are well comparable to each other. Some differences arise due to different distinguishing criteria and here too flat maps can help to reveal them. Flattened representations are a useful approach to represent the convoluted complex surface of the neocortex of primates and other large-brained mammals. In this study, we compared the flattened representation of neocortical areas obtained from the recently published MRI and histology atlas of the rhesus monkey brain (Saleem KS, Logothetis NK. A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates. London: Academic; 2007) with other previously published maps. Our results confirm that flat map representations are advantageous due to their ease of use and that current flat maps are well comparable to each other. Some differences arise due to different distinguishing criteria and here too flat maps can help to reveal them.
    URL, DOI

  6. Jozien Goense, Nikos K Logothetis and Hellmut Merkle.
    Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys. Magnetic Resonance Imaging 28(8):1183–1191, 2010.
    Abstract High signal-to-noise ratios (SNR) are essential for high-resolution anatomical and functional MRI. Phased arrays are advantageous for this but have the drawback that they often have inflexible and bulky configurations. Particularly in experiments where functional MRI is combined with simultaneous electrophysiology, space constraints can be prohibitive. To this end we developed a highly flexible multiple receive element phased array for use on anesthetized monkeys. The elements are interchangeable and different sizes and combinations of coil elements can be used, for instance, combinations of single and overlapped elements. The preamplifiers including control electronics are detachable and can serve a variety of prefabricated and phase matched arrays of different configurations, allowing the elements to always be placed in close proximity to the area of interest. Optimizing performance of the individual elements ensured high SNR at the cortical surface as well as in deeper laying structures. Performance of a variety of arrangements of gapped linear arrays was evaluated at 4.7 and 7T in high-resolution anatomical and functional MRI. High signal-to-noise ratios (SNR) are essential for high-resolution anatomical and functional MRI. Phased arrays are advantageous for this but have the drawback that they often have inflexible and bulky configurations. Particularly in experiments where functional MRI is combined with simultaneous electrophysiology, space constraints can be prohibitive. To this end we developed a highly flexible multiple receive element phased array for use on anesthetized monkeys. The elements are interchangeable and different sizes and combinations of coil elements can be used, for instance, combinations of single and overlapped elements. The preamplifiers including control electronics are detachable and can serve a variety of prefabricated and phase matched arrays of different configurations, allowing the elements to always be placed in close proximity to the area of interest. Optimizing performance of the individual elements ensured high SNR at the cortical surface as well as in deeper laying structures. Performance of a variety of arrangements of gapped linear arrays was evaluated at 4.7 and 7T in high-resolution anatomical and functional MRI.
    URL, DOI

  7. Oxana Eschenko, Santiago Canals, Irina Simanova and Nikos K Logothetis.
    Behavioral, electrophysiological and histopathological consequences of systemic manganese administration in MEMRI. Magnetic Resonance Imaging 28(8):1165–1174, 2010.
    Abstract Manganese (Mn2+)-enhanced magnetic resonance imaging (MEMRI) offers the possibility to generate longitudinal maps of brain activity in unrestrained and behaving animals. However, Mn2+ is a metabolic toxin and a competitive inhibitor for Ca2+, and therefore, a yet unsolved question in MEMRI studies is whether the concentrations of metal ion used may alter brain physiology. In the present work we have investigated the behavioral, electrophysiological and histopathological consequences of MnCl2 administration at concentrations and dosage protocols regularly used in MEMRI. Three groups of animals were sc injected with saline, 0.1 and 0.5 mmol/kg MnCl2, respectively. In vivo electrophysiological recordings in the hippocampal formation revealed a mild but detectable decrease in both excitatory postsynaptic potentials (EPSP) and population spike (PS) amplitude under the highest MnCl2 dose. The EPSP to PS ratio was preserved at control levels, indicating that neuronal excitability was not affected. Experiments of pair pulse facilitation demonstrated a dose dependent increase in the potentiation of the second pulse, suggesting presynaptic Ca2+ competition as the mechanism for the decreased neuronal response. Tetanization of the perforant path induced a long-term potentiation of synaptic transmission that was comparable in all groups, regardless of treatment. Accordingly, the choice accuracy tested on a hippocampal-dependent learning task was not affected. However, the response latency in the same task was largely increased in the group receiving 0.5 mmol/kg of MnCl2. Immunohistological examination of the hippocampus at the end of the experiments revealed no sign of neuronal toxicity or glial reaction. Although we show that MEMRI at 0.1 mmol/Kg MnCl2 may be safely applied to the study of cognitive networks, a detailed assessment of toxicity is strongly recommended for each particular study and Mn2+ administration protocol. Manganese (Mn2+)-enhanced magnetic resonance imaging (MEMRI) offers the possibility to generate longitudinal maps of brain activity in unrestrained and behaving animals. However, Mn2+ is a metabolic toxin and a competitive inhibitor for Ca2+, and therefore, a yet unsolved question in MEMRI studies is whether the concentrations of metal ion used may alter brain physiology. In the present work we have investigated the behavioral, electrophysiological and histopathological consequences of MnCl2 administration at concentrations and dosage protocols regularly used in MEMRI. Three groups of animals were sc injected with saline, 0.1 and 0.5 mmol/kg MnCl2, respectively. In vivo electrophysiological recordings in the hippocampal formation revealed a mild but detectable decrease in both excitatory postsynaptic potentials (EPSP) and population spike (PS) amplitude under the highest MnCl2 dose. The EPSP to PS ratio was preserved at control levels, indicating that neuronal excitability was not affected. Experiments of pair pulse facilitation demonstrated a dose dependent increase in the potentiation of the second pulse, suggesting presynaptic Ca2+ competition as the mechanism for the decreased neuronal response. Tetanization of the perforant path induced a long-term potentiation of synaptic transmission that was comparable in all groups, regardless of treatment. Accordingly, the choice accuracy tested on a hippocampal-dependent learning task was not affected. However, the response latency in the same task was largely increased in the group receiving 0.5 mmol/kg of MnCl2. Immunohistological examination of the hippocampus at the end of the experiments revealed no sign of neuronal toxicity or glial reaction. Although we show that MEMRI at 0.1 mmol/Kg MnCl2 may be safely applied to the study of cognitive networks, a detailed assessment of toxicity is strongly recommended for each particular study and Mn2+ administration protocol.
    URL, DOI

  8. Richard G Wise, Kyle T S Pattinson, Daniel P Bulte, Richard Rogers, Irene Tracey, Paul M Matthews and Peter Jezzard.
    Measurement of relative cerebral blood volume using BOLD contrast and mild hypoxic hypoxia. Magnetic Resonance Imaging 28(8):1129–1134, 2010.
    Abstract Relative cerebral blood volume (CBV) was estimated using a mild hypoxic challenge in humans, combined with BOLD contrast gradient-echo imaging at 3 T. Subjects breathed 16% inspired oxygen, eliciting mild arterial desaturation. The fractional BOLD signal change induced by mild hypoxia is expected to be proportional to CBV under conditions in which there are negligible changes in cerebral perfusion. By comparing the regional BOLD signal changes arising with the transition between normoxia and mild hypoxia, we calculated CBV ratios of 1.5±0.2 (mean±S.D.) for cortical gray matter to white matter and 1.0±0.3 for cortical gray matter to deep gray matter. Relative cerebral blood volume (CBV) was estimated using a mild hypoxic challenge in humans, combined with BOLD contrast gradient-echo imaging at 3 T. Subjects breathed 16% inspired oxygen, eliciting mild arterial desaturation. The fractional BOLD signal change induced by mild hypoxia is expected to be proportional to CBV under conditions in which there are negligible changes in cerebral perfusion. By comparing the regional BOLD signal changes arising with the transition between normoxia and mild hypoxia, we calculated CBV ratios of 1.5±0.2 (mean±S.D.) for cortical gray matter to white matter and 1.0±0.3 for cortical gray matter to deep gray matter.
    URL, DOI

  9. Kevin Whittingstall, Andreas Bartels, Vanessa Singh, Soyoung Kwon and Nikos K Logothetis.
    Integration of EEG source imaging and fMRI during continuous viewing of natural movies. Magnetic Resonance Imaging 28(8):1135–1142, 2010.
    Abstract Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an estimate of the current density at every time point. We then carried out a correlation between the time series of visual contrast changes in the movie with that of EEG voxels. We found the most significant correlations in visual area V1, just as seen in previous fMRI studies (Bartels A, Zeki, S, Logothetis NK. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 2008;18(3):705?717), but on the time scale of milliseconds rather than of seconds. To obtain an estimate of how the EEG signal relates to the BOLD signal, we calculated the IRF between the BOLD signal and the estimated current density in area V1. We found that this IRF was very similar to that observed using combined intracortical recordings and fMRI experiments in nonhuman primates. Taken together, these findings open a new approach to noninvasive mapping of the brain. It allows, firstly, the localization of feature-selective brain areas during natural viewing conditions with the temporal resolution of EEG. Secondly, it provides a tool to assess EEG/BOLD transfer functions during processing of more natural stimuli. This is especially useful in combined EEG/fMRI experiments, where one can now potentially study neural-hemodynamic relationships across the whole brain volume in a noninvasive manner. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an estimate of the current density at every time point. We then carried out a correlation between the time series of visual contrast changes in the movie with that of EEG voxels. We found the most significant correlations in visual area V1, just as seen in previous fMRI studies (Bartels A, Zeki, S, Logothetis NK. Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cereb Cortex 2008;18(3):705?717), but on the time scale of milliseconds rather than of seconds. To obtain an estimate of how the EEG signal relates to the BOLD signal, we calculated the IRF between the BOLD signal and the estimated current density in area V1. We found that this IRF was very similar to that observed using combined intracortical recordings and fMRI experiments in nonhuman primates. Taken together, these findings open a new approach to noninvasive mapping of the brain. It allows, firstly, the localization of feature-selective brain areas during natural viewing conditions with the temporal resolution of EEG. Secondly, it provides a tool to assess EEG/BOLD transfer functions during processing of more natural stimuli. This is especially useful in combined EEG/fMRI experiments, where one can now potentially study neural-hemodynamic relationships across the whole brain volume in a noninvasive manner.
    URL, DOI

  10. Angelo Bifone, Alessandro Gozzi and Adam J Schwarz.
    Functional connectivity in the rat brain: a complex network approach. Magnetic Resonance Imaging 28(8):1200–1209, 2010.
    Abstract Functional connectivity analyses of fMRI data can provide a wealth of information on the brain functional organization and have been widely applied to the study of the human brain. More recently, these methods have been extended to preclinical species, thus providing a powerful translational tool. Here, we review methods and findings of functional connectivity studies in the rat. More specifically, we focus on correlation analysis of pharmacological MRI (phMRI) responses, an approach that has enabled mapping the patterns of connectivity underlying major neurotransmitter systems in vivo. We also review the use of novel statistical approaches based on a network representation of the functional connectivity and their application to the study of the rat brain functional architecture. Functional connectivity analyses of fMRI data can provide a wealth of information on the brain functional organization and have been widely applied to the study of the human brain. More recently, these methods have been extended to preclinical species, thus providing a powerful translational tool. Here, we review methods and findings of functional connectivity studies in the rat. More specifically, we focus on correlation analysis of pharmacological MRI (phMRI) responses, an approach that has enabled mapping the patterns of connectivity underlying major neurotransmitter systems in vivo. We also review the use of novel statistical approaches based on a network representation of the functional connectivity and their application to the study of the rat brain functional architecture.
    URL, DOI

  11. Paul E Summers, Gian Domenico Iannetti and Carlo A Porro.
    Functional exploration of the human spinal cord during voluntary movement and somatosensory stimulation. Magnetic Resonance Imaging 28(8):1216–1224, 2010.
    Abstract Demonstrations of the possibility of obtaining functional information from the spinal cord in humans using functional magnetic resonance imaging (fMRI) have been growing in number and sophistication, but the technique and the results that it provides are still perceived by the scientific community with a greater degree of scepticism than fMRI investigations of brain function. Here we review the literature on spinal fMRI in humans during voluntary movements and somatosensory stimulation. Particular attention is given to study design, acquisition and statistical analysis of the images, and to the agreement between the obtained results and existing knowledge regarding spinal cord anatomy and physiology.A striking weakness of many spinal fMRI studies is the use of small numbers of subjects and of time-points in the acquired functional image series. In addition, spinal fMRI is characterised by large physiological noise, while the recorded functional responses are poorly characterised. For all these reasons, spinal fMRI experiments risk having low statistical power, and few spinal fMRI studies have yielded physiologically relevant information.Thus, while available evidence indicates that spinal fMRI is feasible, we are only approaching the stage at which the technique can be considered to have been rigorously established as a viable means of noninvasively investigating spinal cord functioning in humans. Demonstrations of the possibility of obtaining functional information from the spinal cord in humans using functional magnetic resonance imaging (fMRI) have been growing in number and sophistication, but the technique and the results that it provides are still perceived by the scientific community with a greater degree of scepticism than fMRI investigations of brain function. Here we review the literature on spinal fMRI in humans during voluntary movements and somatosensory stimulation. Particular attention is given to study design, acquisition and statistical analysis of the images, and to the agreement between the obtained results and existing knowledge regarding spinal cord anatomy and physiology.A striking weakness of many spinal fMRI studies is the use of small numbers of subjects and of time-points in the acquired functional image series. In addition, spinal fMRI is characterised by large physiological noise, while the recorded functional responses are poorly characterised. For all these reasons, spinal fMRI experiments risk having low statistical power, and few spinal fMRI studies have yielded physiologically relevant information.Thus, while available evidence indicates that spinal fMRI is feasible, we are only approaching the stage at which the technique can be considered to have been rigorously established as a viable means of noninvasively investigating spinal cord functioning in humans.
    URL, DOI

  12. Steffen Stoewer, Shih-Pi Ku, Jozien Goense, Thomas Steudel, Nikos K Logothetis, John Duncan and Natasha Sigala.
    Frontoparietal activity with minimal decision and control in the awake macaque at 7 T. Magnetic Resonance Imaging 28(8):1120–1128, 2010.
    Abstract Previous imaging work has identified a frontoparietal network in the human brain involved in many different cognitive functions, as well as in simple updates of attended information. To determine whether a similar network is present in the monkey brain and direct future electrophysiological recordings, we examined the activation of frontoparietal areas during visual stimulation in the awake, fixating monkey. We measured activity with BOLD fMRI in three animals and analyzed the data individually for each animal and at group level. We found reliable activations in lateral prefrontal and parietal areas, even though task-related decision making was minimal, as a response to simple update of visual information. These activations were significant for each individual animal, as well as at group level. Similar to human imaging results the update of visual input was enough to activate an extensive network of frontoparietal cortex in the macaque brain, a network which is normally associated with complex cognitive control processes. Previous imaging work has identified a frontoparietal network in the human brain involved in many different cognitive functions, as well as in simple updates of attended information. To determine whether a similar network is present in the monkey brain and direct future electrophysiological recordings, we examined the activation of frontoparietal areas during visual stimulation in the awake, fixating monkey. We measured activity with BOLD fMRI in three animals and analyzed the data individually for each animal and at group level. We found reliable activations in lateral prefrontal and parietal areas, even though task-related decision making was minimal, as a response to simple update of visual information. These activations were significant for each individual animal, as well as at group level. Similar to human imaging results the update of visual input was enough to activate an extensive network of frontoparietal cortex in the macaque brain, a network which is normally associated with complex cognitive control processes.
    URL, DOI

  13. Chase R Figley, Jordan K Leitch and Patrick W Stroman.
    In contrast to BOLD: signal enhancement by extravascular water protons as an alternative mechanism of endogenous fMRI signal change. Magnetic Resonance Imaging 28(8):1234–1243, 2010.
    Abstract Despite the popularity and widespread application of functional magnetic resonance imaging (fMRI) in recent years, the physiological bases of signal change are not yet fully understood. Blood oxygen level-dependant (BOLD) contrast ? attributed to local changes in blood flow and oxygenation, and therefore magnetic susceptibility ? has become the most prevalent means of functional neuroimaging. However, at short echo times, spin-echo sequences show considerable deviations from the BOLD model, implying a second, non-BOLD component of signal change. This has been dubbed ?signal enhancement by extravascular water protons? (SEEP) and is proposed to result from proton-density changes associated with cellular swelling. Given that such changes are independent of magnetic susceptibility, SEEP may offer new and improved opportunities for carrying out fMRI in regions with close proximity to air?tissue and/or bone?tissue interfaces (e.g., the prefrontal cortex and spinal cord), as well as regions close to large blood vessels, which may not be ideally suited for BOLD imaging. However, because of the interdisciplinary nature of the literature, there has yet to be a thorough synthesis, tying together the various and sometimes disparate aspects of SEEP theory. As such, we aim to provide a concise yet comprehensive overview of SEEP, including recent and compelling evidence for its validity, its current applications and its future relevance to the rapidly expanding field of functional neuroimaging. Before presenting the evidence for a non-BOLD component of endogenous functional contrast, and to enable a more critical review for the nonexpert reader, we begin by reviewing the fundamental principles underlying BOLD theory. Despite the popularity and widespread application of functional magnetic resonance imaging (fMRI) in recent years, the physiological bases of signal change are not yet fully understood. Blood oxygen level-dependant (BOLD) contrast ? attributed to local changes in blood flow and oxygenation, and therefore magnetic susceptibility ? has become the most prevalent means of functional neuroimaging. However, at short echo times, spin-echo sequences show considerable deviations from the BOLD model, implying a second, non-BOLD component of signal change. This has been dubbed ?signal enhancement by extravascular water protons? (SEEP) and is proposed to result from proton-density changes associated with cellular swelling. Given that such changes are independent of magnetic susceptibility, SEEP may offer new and improved opportunities for carrying out fMRI in regions with close proximity to air?tissue and/or bone?tissue interfaces (e.g., the prefrontal cortex and spinal cord), as well as regions close to large blood vessels, which may not be ideally suited for BOLD imaging. However, because of the interdisciplinary nature of the literature, there has yet to be a thorough synthesis, tying together the various and sometimes disparate aspects of SEEP theory. As such, we aim to provide a concise yet comprehensive overview of SEEP, including recent and compelling evidence for its validity, its current applications and its future relevance to the rapidly expanding field of functional neuroimaging. Before presenting the evidence for a non-BOLD component of endogenous functional contrast, and to enable a more critical review for the nonexpert reader, we begin by reviewing the fundamental principles underlying BOLD theory.
    URL, DOI

  14. Stephen D Mayhew, Bradley J Macintosh, Sharon G Dirckx, Gian Domenico Iannetti and Richard G Wise.
    Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation. Magnetic Resonance Imaging 28(8):1066–1077, 2010.
    Abstract We investigate the relationship between the temporal variation in the magnitude of occipital visual evoked potentials (VEPs) and of haemodynamic measures of brain activity obtained using both blood oxygenation level dependent (BOLD) and perfusion sensitive (ASL) functional magnetic resonance imaging (fMRI). Volunteers underwent a continuous BOLD fMRI scan and/or a continuous perfusion-sensitive (gradient and spin echo readout) ASL scan, during which 30 second blocks of contrast reversing visual stimuli (at 4 Hz) were interleaved with 30 second blocks of rest (visual fixation). Electroencephalography (EEG) and fMRI were simultaneously recorded and following EEG artefact cleaning, VEPs were averaged across the whole stimulation block (120 reversals, VEP120) and at a finer timescale (15 reversals, VEP15). Both BOLD and ASL time-series were linearly modelled to establish: (1) the mean response to visual stimulation, (2) transient responses at the start and end of each stimulation block, (3) the linear decrease between blocks, (4) the nonlinear between-block variation (covariation with VEP120), (5) the linear decrease within block and (6) the nonlinear variation within block (covariation with VEP15).VEPs demonstrated a significant linear time-dependent reduction in amplitude, both within and between blocks of stimulation. Consistent with the VEPs finding, both BOLD and perfusion measures showed significant linear time-dependent reductions in response amplitude between blocks. In addition, there were significant linear time-dependent within-block reductions in BOLD response as well as between-block variations positively correlating with VEP120 (medial occipital and frontal) and within-block variations positively correlating with VEP15 (occipital and thalamus).Both electrophysiological and haemodynamic (BOLD and ASL) measures of visual activity showed steady habituation through the experiment. Beyond this, the VEP measures were predictive of shorter timescale (3-30 second) localised variations in BOLD response engaging both occipital cortex and other regions such as anterior cingulate and parietal regions, implicating attentional processes in the modulation of the VEP signal. We investigate the relationship between the temporal variation in the magnitude of occipital visual evoked potentials (VEPs) and of haemodynamic measures of brain activity obtained using both blood oxygenation level dependent (BOLD) and perfusion sensitive (ASL) functional magnetic resonance imaging (fMRI). Volunteers underwent a continuous BOLD fMRI scan and/or a continuous perfusion-sensitive (gradient and spin echo readout) ASL scan, during which 30 second blocks of contrast reversing visual stimuli (at 4 Hz) were interleaved with 30 second blocks of rest (visual fixation). Electroencephalography (EEG) and fMRI were simultaneously recorded and following EEG artefact cleaning, VEPs were averaged across the whole stimulation block (120 reversals, VEP120) and at a finer timescale (15 reversals, VEP15). Both BOLD and ASL time-series were linearly modelled to establish: (1) the mean response to visual stimulation, (2) transient responses at the start and end of each stimulation block, (3) the linear decrease between blocks, (4) the nonlinear between-block variation (covariation with VEP120), (5) the linear decrease within block and (6) the nonlinear variation within block (covariation with VEP15).VEPs demonstrated a significant linear time-dependent reduction in amplitude, both within and between blocks of stimulation. Consistent with the VEPs finding, both BOLD and perfusion measures showed significant linear time-dependent reductions in response amplitude between blocks. In addition, there were significant linear time-dependent within-block reductions in BOLD response as well as between-block variations positively correlating with VEP120 (medial occipital and frontal) and within-block variations positively correlating with VEP15 (occipital and thalamus).Both electrophysiological and haemodynamic (BOLD and ASL) measures of visual activity showed steady habituation through the experiment. Beyond this, the VEP measures were predictive of shorter timescale (3-30 second) localised variations in BOLD response engaging both occipital cortex and other regions such as anterior cingulate and parietal regions, implicating attentional processes in the modulation of the VEP signal.
    URL, DOI

  15. Michael T Lippert, Thomas Steudel, Frank Ohl, Nikos K Logothetis and Christoph Kayser.
    Coupling of neural activity and fMRI-BOLD in the motion area MT. Magnetic Resonance Imaging 28(8):1087–1094, 2010.
    Abstract The fMRI-BOLD contrast is widely used to study the neural basis of sensory perception and cognition. This signal, however, reflects neural activity only indirectly, and the detailed mechanisms of neurovascular coupling and the neurophysiological correlates of the BOLD signal remain debated. Here we investigate the coupling of BOLD and electrophysiological signals in the motion area MT of the macaque monkey by simultaneously recording both signals. Our results demonstrate that a prominent neuronal response property of area MT, so-called motion opponency, can be used to induce dissociations of BOLD and neuronal firing. During the presentation of a stimulus optimally driving the local neurons, both field potentials [local field potentials (LFPs)] and spiking activity [multi-unit activity (MUA)] correlated with the BOLD signal. When introducing the motion opponency stimulus, however, correlations of MUA with BOLD were much reduced, and LFPs were a much better predictor of the BOLD signal than MUA. In addition, for a subset of recording sites we found positive BOLD and LFP responses in the presence of decreases in MUA, regardless of the stimulus used. Together, these results demonstrate that correlations between BOLD and MUA are dependent on the particular site and stimulus paradigm, and foster the notion that the fMRI-BOLD signal reflects local dendrosomatic processing and synaptic activity rather than principal neuron spiking responses. The fMRI-BOLD contrast is widely used to study the neural basis of sensory perception and cognition. This signal, however, reflects neural activity only indirectly, and the detailed mechanisms of neurovascular coupling and the neurophysiological correlates of the BOLD signal remain debated. Here we investigate the coupling of BOLD and electrophysiological signals in the motion area MT of the macaque monkey by simultaneously recording both signals. Our results demonstrate that a prominent neuronal response property of area MT, so-called motion opponency, can be used to induce dissociations of BOLD and neuronal firing. During the presentation of a stimulus optimally driving the local neurons, both field potentials [local field potentials (LFPs)] and spiking activity [multi-unit activity (MUA)] correlated with the BOLD signal. When introducing the motion opponency stimulus, however, correlations of MUA with BOLD were much reduced, and LFPs were a much better predictor of the BOLD signal than MUA. In addition, for a subset of recording sites we found positive BOLD and LFP responses in the presence of decreases in MUA, regardless of the stimulus used. Together, these results demonstrate that correlations between BOLD and MUA are dependent on the particular site and stimulus paradigm, and foster the notion that the fMRI-BOLD signal reflects local dendrosomatic processing and synaptic activity rather than principal neuron spiking responses.
    URL, DOI

  16. Jozef H Duyn.
    Study of brain anatomy with high-field MRI: recent progress. Magnetic Resonance Imaging 28(8):1210–1215, 2010.
    Abstract Recent developments in high-field magnetic resonance imaging technology have led to improved contrast and resolution and are opening up new possibilities for the study of human brain anatomy. In particular, techniques sensitized to magnetic susceptibility contrast provide particular advantages at high field that have allowed visualization of brain structures that have been difficult to detect with conventional technology. In this review, some of these developments and techniques will be discussed, and an attempt will be made to interpret magnetic susceptibility contrast based on recent studies. Recent developments in high-field magnetic resonance imaging technology have led to improved contrast and resolution and are opening up new possibilities for the study of human brain anatomy. In particular, techniques sensitized to magnetic susceptibility contrast provide particular advantages at high field that have allowed visualization of brain structures that have been difficult to detect with conventional technology. In this review, some of these developments and techniques will be discussed, and an attempt will be made to interpret magnetic susceptibility contrast based on recent studies.
    URL, DOI

  17. Jordan K Leitch, Chase R Figley and Patrick W Stroman.
    Applying functional MRI to the spinal cord and brainstem. Magnetic Resonance Imaging 28(8):1225–1233, 2010.
    Abstract Functional magnetic resonance imaging of the spinal cord (spinal fMRI) has facilitated the noninvasive visualization of neural activity in the spinal cord (SC) and brainstem of both animals and humans. This technique has yet to gain the widespread usage of brain fMRI, due in part to the intrinsic technical challenges spinal fMRI presents and to the narrower scope of applications it fulfills. Nonetheless, methodological progress has been considerable and rapid. To date, spinal fMRI studies have investigated SC function during sensory or motor task paradigms in spinal cord injury (SCI), multiple sclerosis (MS) and neuropathic pain (NP) patient populations, all of which have yielded consistent and sensitive results. The most recent study in our laboratory has successfully used spinal fMRI to examine cervical SC activity in a SCI patient with a metallic fixation device spanning the C4 to C6 vertebrae, a critical step in realizing the clinical utility of the technique. The literature reviewed in this article suggests that spinal fMRI is poised for usage in a wide range of patient populations, as multiple groups have observed intriguing, yet consistent, results using standard, readily available MR systems and hardware. The next step is the implementation of this technique in the clinic to supplement standard qualitative behavioral assessments of SCI. Spinal fMRI may offer insight into the subtleties of function in the injured and diseased SC, and support the development of new methods for treatment and monitoring. Functional magnetic resonance imaging of the spinal cord (spinal fMRI) has facilitated the noninvasive visualization of neural activity in the spinal cord (SC) and brainstem of both animals and humans. This technique has yet to gain the widespread usage of brain fMRI, due in part to the intrinsic technical challenges spinal fMRI presents and to the narrower scope of applications it fulfills. Nonetheless, methodological progress has been considerable and rapid. To date, spinal fMRI studies have investigated SC function during sensory or motor task paradigms in spinal cord injury (SCI), multiple sclerosis (MS) and neuropathic pain (NP) patient populations, all of which have yielded consistent and sensitive results. The most recent study in our laboratory has successfully used spinal fMRI to examine cervical SC activity in a SCI patient with a metallic fixation device spanning the C4 to C6 vertebrae, a critical step in realizing the clinical utility of the technique. The literature reviewed in this article suggests that spinal fMRI is poised for usage in a wide range of patient populations, as multiple groups have observed intriguing, yet consistent, results using standard, readily available MR systems and hardware. The next step is the implementation of this technique in the clinic to supplement standard qualitative behavioral assessments of SCI. Spinal fMRI may offer insight into the subtleties of function in the injured and diseased SC, and support the development of new methods for treatment and monitoring.
    URL, DOI

  18. Niklas Lüdtke, Nikos K Logothetis and Stefano Panzeri.
    Testing methodologies for the nonlinear analysis of causal relationships in neurovascular coupling. Magnetic Resonance Imaging 28(8):1113–1119, 2010.
    Abstract We investigated the use and implementation of a nonlinear methodology for establishing which changes in neurophysiological signals cause changes in the blood oxygenation level-dependent (BOLD) contrast measured in functional magnetic resonance imaging. Unlike previous analytical approaches, which used linear correlation to establish covariations between neural activity and BOLD, we propose a directed information-theoretic measure, the transfer entropy, which can elucidate even highly nonlinear causal relationships between neural activity and BOLD signal. In this study we investigated the practicality of such an analysis given the limited data samples that can be collected experimentally due to the low temporal resolution of BOLD signals. We implemented several algorithms for the estimation of transfer entropy and we tested their effectiveness using simulated local field potentials (LFPs) and BOLD data constructed to match the main statistical properties of real LFP and BOLD signals measured simultaneously in monkey primary visual cortex. We found that using the advanced methods of entropy estimation implemented and described here, a transfer entropy analysis of neurovascular coupling based on experimentally attainable data sets is feasible. We investigated the use and implementation of a nonlinear methodology for establishing which changes in neurophysiological signals cause changes in the blood oxygenation level-dependent (BOLD) contrast measured in functional magnetic resonance imaging. Unlike previous analytical approaches, which used linear correlation to establish covariations between neural activity and BOLD, we propose a directed information-theoretic measure, the transfer entropy, which can elucidate even highly nonlinear causal relationships between neural activity and BOLD signal. In this study we investigated the practicality of such an analysis given the limited data samples that can be collected experimentally due to the low temporal resolution of BOLD signals. We implemented several algorithms for the estimation of transfer entropy and we tested their effectiveness using simulated local field potentials (LFPs) and BOLD data constructed to match the main statistical properties of real LFP and BOLD signals measured simultaneously in monkey primary visual cortex. We found that using the advanced methods of entropy estimation implemented and described here, a transfer entropy analysis of neurovascular coupling based on experimentally attainable data sets is feasible.
    URL, DOI

  19. Nathalie Just, Carl Petersen and Rolf Gruetter.
    BOLD responses to trigeminal nerve stimulation. Magnetic Resonance Imaging 28(8):1143–1151, 2010.
    Abstract The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cortex (S2) and the motor cortex. These cortical areas were reached from afferent pathways from the trigeminal ganglion, the trigeminal nuclei and thalamic nuclei from which neurons project their axons upon whisker stimulation. The maximum BOLD responses were obtained for a stimulus frequency of 1 Hz, a stimulus pulse width of 100 ?s and for current intensities between 1.5 and 3 mA. The BOLD response was nonlinear as a function of frequency and current intensity. Additionally, modeling BOLD responses in the rat barrel cortex from separate cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) measurements showed good agreement with the shape and amplitude of measured BOLD responses as a function of stimulus frequency and will potentially allow to identify the sources of BOLD nonlinearities. Activation of the rat barrel cortex using trigeminal nerve stimulation will contribute to the interpretation of the BOLD signals from functional magnetic resonance imaging studies. The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cortex (S2) and the motor cortex. These cortical areas were reached from afferent pathways from the trigeminal ganglion, the trigeminal nuclei and thalamic nuclei from which neurons project their axons upon whisker stimulation. The maximum BOLD responses were obtained for a stimulus frequency of 1 Hz, a stimulus pulse width of 100 ?s and for current intensities between 1.5 and 3 mA. The BOLD response was nonlinear as a function of frequency and current intensity. Additionally, modeling BOLD responses in the rat barrel cortex from separate cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) measurements showed good agreement with the shape and amplitude of measured BOLD responses as a function of stimulus frequency and will potentially allow to identify the sources of BOLD nonlinearities. Activation of the rat barrel cortex using trigeminal nerve stimulation will contribute to the interpretation of the BOLD signals from functional magnetic resonance imaging studies.
    URL, DOI

  20. Yusuke Murayama, Felix Bieβmann, Frank C Meinecke, Klaus-Robert Müller, Mark Augath, Axel Oeltermann and Nikos K Logothetis.
    Relationship between neural and hemodynamic signals during spontaneous activity studied with temporal kernel CCA. Magnetic Resonance Imaging 28(8):1095–1103, 2010.
    Abstract Functional magnetic resonance imaging (fMRI) based on the so-called blood oxygen level-dependent (BOLD) contrast is a powerful tool for studying brain function not only locally but also on the large scale. Most studies assume a simple relationship between neural and BOLD activity, in spite of the fact that it is important to elucidate how the ?when? and ?what? components of neural activity are correlated to the ?where? of fMRI data. Here we conducted simultaneous recordings of neural and BOLD signal fluctuations in primary visual (V1) cortex of anesthetized monkeys. We explored the neurovascular relationship during periods of spontaneous activity by using temporal kernel canonical correlation analysis (tkCCA). tkCCA is a multivariate method that can take into account any features in the signals that univariate analysis cannot. The method detects filters in voxel space (for fMRI data) and in frequency?time space (for neural data) that maximize the neurovascular correlation without any assumption of a hemodynamic response function (HRF). Our results showed a positive neurovascular coupling with a lag of 4?5 s and a larger contribution from local field potentials (LFPs) in the ? range than from low-frequency LFPs or spiking activity. The method also detected a higher correlation around the recording site in the concurrent spatial map, even though the pattern covered most of the occipital part of V1. These results are consistent with those of previous studies and represent the first multivariate analysis of intracranial electrophysiology and high-resolution fMRI. Functional magnetic resonance imaging (fMRI) based on the so-called blood oxygen level-dependent (BOLD) contrast is a powerful tool for studying brain function not only locally but also on the large scale. Most studies assume a simple relationship between neural and BOLD activity, in spite of the fact that it is important to elucidate how the ?when? and ?what? components of neural activity are correlated to the ?where? of fMRI data. Here we conducted simultaneous recordings of neural and BOLD signal fluctuations in primary visual (V1) cortex of anesthetized monkeys. We explored the neurovascular relationship during periods of spontaneous activity by using temporal kernel canonical correlation analysis (tkCCA). tkCCA is a multivariate method that can take into account any features in the signals that univariate analysis cannot. The method detects filters in voxel space (for fMRI data) and in frequency?time space (for neural data) that maximize the neurovascular correlation without any assumption of a hemodynamic response function (HRF). Our results showed a positive neurovascular coupling with a lag of 4?5 s and a larger contribution from local field potentials (LFPs) in the ? range than from low-frequency LFPs or spiking activity. The method also detected a higher correlation around the recording site in the concurrent spatial map, even though the pattern covered most of the occipital part of V1. These results are consistent with those of previous studies and represent the first multivariate analysis of intracranial electrophysiology and high-resolution fMRI.
    URL, DOI

  21. Bang-Bon Koo, Kiri Choi, Itamar Ronen, Jong-Min Lee and Dae-Shik Kim.
    Quantitative mapping of diffusion characteristics under the cortical surface. Magnetic Resonance Imaging 28(8):1175–1182, 2010.
    Abstract Recent studies have demonstrated regional segregations on several peripheral white matter (WM) regions, which may imply different anatomical or functional characteristics [Cereb Cortex 17(4) 2007 816?25; Neuroimage 37(2) 2007 599?610; J Cogn Neurosci 16(7) 2004 1227?33]. Nonetheless, little is known about overall patterns of peripheral WM across the regions. In this study, diffusion tensor imaging with 2-mm isovoxel resolution and cortical surface mapping were combined to determine peripheral WM structure. Fractional anisotropy (FA) mapping showed consistent regional patterns across the young normal subjects while significant high or low FA values were shown in the motor-somatosensory cortex, prefrontal cortex, temporal, and medial occipital cortex. By adopting both region of interest and connectivity analysis, results were then discussed with structural network properties as well as WM maturation process. Recent studies have demonstrated regional segregations on several peripheral white matter (WM) regions, which may imply different anatomical or functional characteristics [Cereb Cortex 17(4) 2007 816?25; Neuroimage 37(2) 2007 599?610; J Cogn Neurosci 16(7) 2004 1227?33]. Nonetheless, little is known about overall patterns of peripheral WM across the regions. In this study, diffusion tensor imaging with 2-mm isovoxel resolution and cortical surface mapping were combined to determine peripheral WM structure. Fractional anisotropy (FA) mapping showed consistent regional patterns across the young normal subjects while significant high or low FA values were shown in the motor-somatosensory cortex, prefrontal cortex, temporal, and medial occipital cortex. By adopting both region of interest and connectivity analysis, results were then discussed with structural network properties as well as WM maturation process.
    URL, DOI

  22. Michelle Hampson, Naomi Driesen, Jennifer K Roth, John C Gore and Todd R Constable.
    Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic Resonance Imaging 28(8):1051–1057, 2010.
    Abstract Functional brain imaging studies have identified a set of brain areas typically activated during cognitive tasks (task-positive brain areas) and another set of brain areas typically deactivated during cognitive tasks (task-negative brain areas). Negative correlations, or anticorrelations, between task-positive and task-negative brain areas have been reported at rest. Furthermore, the strength of these anticorrelations appears to be related to cognitive function. However, studies examining anticorrelations have typically employed global regression or similar analysis steps that force anticorrelated relationships to exist between brain areas. Therefore the validity of these findings has been questioned. Here we examine anticorrelations between a task-negative region in the medial frontal gyrus/anterior cingulate cortex and dorsolateral prefrontal cortex, a classic task-positive area, using an analysis that does not include global regression. Instead, we control for whole-brain correlations in the group-level analysis. Using this approach, we demonstrate that the strength of the functional connection between the medial frontal cortex and the dorsolateral prefrontal cortex is related to cognitive function and that this relationship is not an artifact of global regression. Functional brain imaging studies have identified a set of brain areas typically activated during cognitive tasks (task-positive brain areas) and another set of brain areas typically deactivated during cognitive tasks (task-negative brain areas). Negative correlations, or anticorrelations, between task-positive and task-negative brain areas have been reported at rest. Furthermore, the strength of these anticorrelations appears to be related to cognitive function. However, studies examining anticorrelations have typically employed global regression or similar analysis steps that force anticorrelated relationships to exist between brain areas. Therefore the validity of these findings has been questioned. Here we examine anticorrelations between a task-negative region in the medial frontal gyrus/anterior cingulate cortex and dorsolateral prefrontal cortex, a classic task-positive area, using an analysis that does not include global regression. Instead, we control for whole-brain correlations in the group-level analysis. Using this approach, we demonstrate that the strength of the functional connection between the medial frontal cortex and the dorsolateral prefrontal cortex is related to cognitive function and that this relationship is not an artifact of global regression.
    URL, DOI

  23. Federico De Martino, Giancarlo Valente, Aline W Borst, Fabrizio Esposito, Alard Roebroeck, Rainer Goebel and Elia Formisano.
    Multimodal imaging: an evaluation of univariate and multivariate methods for simultaneous EEG/fMRI. Magnetic Resonance Imaging 28(8):1104–1112, 2010.
    Abstract The combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has been proposed as a tool to study brain dynamics with both high temporal and high spatial resolution. Multimodal imaging techniques rely on the assumption of a common neuronal source for the different recorded signals. In order to maximally exploit the combination of these techniques, one needs to understand the coupling (i.e., the relation) between electroencephalographic (EEG) and fMRI blood oxygen level-dependent (BOLD) signals.Recently, simultaneous EEG-fMRI measurements have been used to investigate the relation between the two signals. Previous attempts at the analysis of simultaneous EEG-fMRI data reported significant correlations between regional BOLD activations and modulation of both event-related potential (ERP) and oscillatory EEG power, mostly in the alpha but also in other frequency bands.Beyond the correlation of the two measured brain signals, the relevant issue we address here is the ability of predicting the signal in one modality using information from the other modality. Using multivariate machine learning-based regression, we show how it is possible to predict EEG power oscillations from simultaneously acquired fMRI data during an eyes-open/eyes-closed task using either the original channels or the underlying cortically distributed sources as the relevant EEG signal for the analysis of multimodal data. The combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has been proposed as a tool to study brain dynamics with both high temporal and high spatial resolution. Multimodal imaging techniques rely on the assumption of a common neuronal source for the different recorded signals. In order to maximally exploit the combination of these techniques, one needs to understand the coupling (i.e., the relation) between electroencephalographic (EEG) and fMRI blood oxygen level-dependent (BOLD) signals.Recently, simultaneous EEG-fMRI measurements have been used to investigate the relation between the two signals. Previous attempts at the analysis of simultaneous EEG-fMRI data reported significant correlations between regional BOLD activations and modulation of both event-related potential (ERP) and oscillatory EEG power, mostly in the alpha but also in other frequency bands.Beyond the correlation of the two measured brain signals, the relevant issue we address here is the ability of predicting the signal in one modality using information from the other modality. Using multivariate machine learning-based regression, we show how it is possible to predict EEG power oscillations from simultaneously acquired fMRI data during an eyes-open/eyes-closed task using either the original channels or the underlying cortically distributed sources as the relevant EEG signal for the analysis of multimodal data.
    URL, DOI

  24. Umair J Chaudhary, Vasileios Kokkinos, David W Carmichael, Roman Rodionov, David Gasston, John S Duncan and Louis Lemieux.
    Implementation and evaluation of simultaneous video-electroencephalography and functional magnetic resonance imaging. Magnetic Resonance Imaging 28(8):1192–1199, 2010.
    Abstract The objective of this study was to demonstrate that the addition of simultaneous and synchronised video to electroencephalography (EEG)-correlated functional magnetic resonance imaging (fMRI) could increase recorded information without data quality reduction. We investigated the effect of placing EEG, video equipment and their required power supplies inside the scanner room, on EEG, video and MRI data quality, and evaluated video-EEG-fMRI by modelling a hand motor task. Gradient-echo, echo-planner images (EPI) were acquired on a 3-T MRI scanner at variable camera positions in a test object [with and without radiofrequency (RF) excitation], and human subjects. EEG was recorded using a commercial MR-compatible 64-channel cap and amplifiers. Video recording was performed using a two-camera custom-made system with EEG synchronization. An in-house script was used to calculate signal to fluctuation noise ratio (SFNR) from EPI in test object with variable camera positions and in human subjects with and without concurrent video recording. Five subjects were investigated with video-EEG-fMRI while performing hand motor task. The fMRI time series data was analysed using statistical parametric mapping, by building block design general linear models which were paradigm prescribed and video based. Introduction of the cameras did not alter the SFNR significantly, nor did it show any signs of spike noise during RF off conditions. Video and EEG quality also did not show any significant artefact. The Statistical Parametric MappingT maps from video based design revealed additional blood oxygen level-dependent responses in the expected locations for non-compliant subjects compared to the paradigm prescribed design. We conclude that video-EEG-fMRI set up can be implemented without affecting the data quality significantly and may provide valuable information on behaviour to enhance the analysis of fMRI data. The objective of this study was to demonstrate that the addition of simultaneous and synchronised video to electroencephalography (EEG)-correlated functional magnetic resonance imaging (fMRI) could increase recorded information without data quality reduction. We investigated the effect of placing EEG, video equipment and their required power supplies inside the scanner room, on EEG, video and MRI data quality, and evaluated video-EEG-fMRI by modelling a hand motor task. Gradient-echo, echo-planner images (EPI) were acquired on a 3-T MRI scanner at variable camera positions in a test object [with and without radiofrequency (RF) excitation], and human subjects. EEG was recorded using a commercial MR-compatible 64-channel cap and amplifiers. Video recording was performed using a two-camera custom-made system with EEG synchronization. An in-house script was used to calculate signal to fluctuation noise ratio (SFNR) from EPI in test object with variable camera positions and in human subjects with and without concurrent video recording. Five subjects were investigated with video-EEG-fMRI while performing hand motor task. The fMRI time series data was analysed using statistical parametric mapping, by building block design general linear models which were paradigm prescribed and video based. Introduction of the cameras did not alter the SFNR significantly, nor did it show any signs of spike noise during RF off conditions. Video and EEG quality also did not show any significant artefact. The Statistical Parametric MappingT maps from video based design revealed additional blood oxygen level-dependent responses in the expected locations for non-compliant subjects compared to the paradigm prescribed design. We conclude that video-EEG-fMRI set up can be implemented without affecting the data quality significantly and may provide valuable information on behaviour to enhance the analysis of fMRI data.
    URL, DOI